Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.198
Filtrar
1.
Nat Prod Res ; : 1-7, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629157

RESUMO

Icariin is the most bioactive ingredient of Epimedium L. and a quality marker of Herba Epimedii. Conventional methods for production of Icariin are known to be inefficient, resulting in low yields and significant environmental pollution. This study aimed to develop a sustainable and effective biphasic enzymatic hydrolysis system for the efficient conversion of epimedin C to icariin. The biphasic system was created using butyl acetate and phosphate buffer (pH 4.5) at a ratio of 3:1 (V/V) along with α-L-rhamnosidase/epimedin C (2 U/1 mg) at 50 °C for 12 h. Consequently, 98.21% of epimedin C was hydrolysed to icariin, with 95.62% of the product being transferred to the organic phase. Even after four cycles of use, the conversion ratio remained high at 75.28%. Furthermore, this novel strategy was also used for the conversion of Epimedium brevicornu Maxim. extracts. The biphasic system represents a sustainable and effective method for icariin production, offering potential benefits for industrial applications.

2.
Macromol Rapid Commun ; : e2400073, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594014

RESUMO

Nonconventional luminescent polymers have become research hotspots due to their advantages such as persistent room temperature phosphorescence (p-RTP) emission and strong film-forming properties. It is proven that the molecular weight (MW) of such luminescent polymers has a significant impact on their emission over a large range, generally with a red shift as the MW increases. Herein, four controllable MW polyacrylamides are prepared via reversible addition-fragmentation chain transfer polymerization (RAFT), and their photoluminescence quantum yield and p-RTP lifetimes gradually increase with the increasing MW. The emission of p-RTP gradually shifts blue with increasing MW, which is likely due to the gradually changing interactions between the electron-rich portion in RAFT reagent and the increasing acrylamide (AM) units in the molecular chain. These can be reasonably explained through small angle X-ray scattering, the clustering-triggered emission (CTE) mechanism, and supported by theoretical calculations. Powder with controllable p-RTP capability has the potential for strategic anti-counterfeiting encryption. The above results not only promote the development of the CTE mechanism toward more precise explanations but also provide new ideas for the preparation of nonconventional luminescent polymers with controllable p-RTP emission performance.

3.
J Environ Manage ; 358: 120896, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640758

RESUMO

Combination of oxidation processes are one of the most promising humic acid treatment technologies. Single oxidant or even two oxidants in advance oxidation process can hardly achieve satisfactory removal efficiency of refractory organic matter, mainly humic acid, in the treatment process of reverse osmosis concentrates from landfill leachate. To solve this problem, this study investigated the synergistic degradation of Humic acid (HA) using a Cu and Co supported on carbon catalyst (CuCo/C) in a Hydrogen peroxide (H2O2) with ozone (O3) system. The catalyst was characterized by performing SEM, XRD, BET, XPS and FTIR technologies. UV-vis spectra, 3D Excitation Emission Matrix Spectra (3D-EEM) and gas chromatography-mass spectrometry (GC-MS) were applied for exploring degradation mechanism of HA. To further understand the oxidation mechanism, electron paramagnetic resonance (EPR) was used to evaluate the generation of hydroxyl (·OH) and superoxide radicals (O2·-). As a result, CuCo/C catalyst possessed stable catalytic performance for HA degradation with a wide pH range from 5 to 8, while T = 40 °C,catalyst dosage of 2.4 g/L,O3 intake rate of 0.15 g/min and H2O2 dosage of 1.92 mL/L, the degradation rate of total organic carbon (TOC) achieved 40-46.5 mg·L-1min-1. As affirmed by the EPR, ·OH and O2·- were effectively generated with addition of the CuCo/C catalyst. Degradation performance of UV254 proved that the catalytic activity can still be maintained above 95% with removal rate of 82% after 5 cycles reuse. GC-MS shows that the oxidation products mainly consist of amide, benzoheterocyclic ring and carboxylic acid. This work promotes an effective method for degrading HA, which has the potential for satisfactory application in landfill leachate.

4.
Int J Food Sci Nutr ; : 1-20, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659110

RESUMO

This review aims to analyse the efficacy of dietary supplements in reducing plasma cholesterol levels. Focusing on evidence from meta-analyses of randomised controlled clinical trials, with an emphasis on potential mechanisms of action as supported by human, animal, and cell studies. Certain dietary supplements including phytosterols, berberine, viscous soluble dietary fibres, garlic supplements, soy protein, specific probiotic strains, and certain polyphenol extracts could significantly reduce plasma total and low-density lipoprotein (LDL) cholesterol levels by 3-25% in hypercholesterolemic patients depending on the type of supplement. They tended to be more effective in reducing plasma LDL cholesterol level in hypercholesterolemic individuals than in normocholesterolemic individuals. These supplements worked by various mechanisms, such as enhancing the excretion of bile acids, inhibiting the absorption of cholesterol in the intestines, increasing the expression of hepatic LDL receptors, suppressing the activity of enzymes involved in cholesterol synthesis, and activating the adenosine monophosphate-activated protein kinase signalling pathway.

5.
Plants (Basel) ; 13(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38498487

RESUMO

Variations in the petal color of Brassica napus are crucial for ornamental value, but the controlled loci for breeding remain to be unraveled. Here, we report a candidate locus, AGR-FC.C3, having conducted a bulked segregant analysis on a segregating population with different petal colors. Our results showed that the locus covers 9.46 Mb of the genome, harboring 951 genes. BnaC03.MYB4, BnaC03.MYB85, BnaC03.MYB73, BnaC03.MYB98, and BnaC03.MYB102 belonging to MYB TFs families that might regulate the petal color were observed. Next, a bulk RNA sequencing of white and orange-yellow petals on three development stages was performed to further identify the possible governed genes. The results revealed a total of 51 genes by overlapping the transcriptome data and the bulked segregant analysis data, and it was found that the expression of BnaC03.CCD4 was significantly up-regulated in the white petals at three development stages. Then, several novel candidate genes such as BnaC03.ENDO3, BnaC03.T22F8.180, BnaC03.F15C21.8, BnaC03.Q8GSI6, BnaC03.LSD1, BnaC03.MAP1Da, BnaC03.MAP1Db, and BnaC03G0739700ZS putative to controlling the petal color were identified through deeper analysis. Furthermo re, we have developed two molecular markers for the reported functional gene BnaC03.CCD4 to discriminate the white and orange-yellow petal colors. Our results provided a novel locus for breeding rapeseed with multi-color petals.

7.
Angew Chem Int Ed Engl ; : e202402093, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438306

RESUMO

Lead-based radicals in the oxidation state of +1 are elusive species and are highly challenging to isolate in the condensed phase. In this study, we present the synthesis and characterization of the first isolable free plumbylyne radical 2 bearing a one-coordinate Pb(I) atom. It reacts with an N-heterocyclic carbene (NHC) to afford a two-coordinate NHC-ligated Pb(I) radical 3. 2 and 3 represent the first isolable Pb(I)-based radicals. Theoretical calculations and electron paramagnetic resonance analysis revealed that the unpaired electron mainly resides at the Pb 6p orbital in both radicals. Owing to the unique one-coordinate nature of the Pb atom in 2, it possesses two-fold orbital pseudo-degeneracy and substantial unquenched orbital angular momentum, and exhibits hitherto strongest g-factor anisotropy (gx,y,z=1.496, 1.166, 0.683) amongst main group radicals. Preliminary investigations into the reactivity of 2 unveiled its Pb-centered radical nature, and plumbylenes were isolated as products.

8.
Int Immunopharmacol ; 130: 111519, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442573

RESUMO

This study investigates the molecular mechanisms by which extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSCs) promote M2 polarization of macrophages and thus reduce lung injury caused by sepsis. High-throughput sequencing was used to identify differentially expressed genes related to long non-coding RNA (lncRNA) in ADSC-derived EVs (ADSC-EVs) in sepsis lung tissue. Weighted gene co-expression network analysis (WGCNA) was employed to predict the downstream target genes of the lncRNA DLEU2. The RNAInter database predicted miRNAs that interact with DLEU2 and LXN. Functional and pathway enrichment analyses were performed using GO and KEGG analysis. A mouse model of sepsis was established, and treatment with a placebo or ADSC-EVs was administered, followed by RT-qPCR analysis. ADSC-EVs were isolated and identified. In vitro cell experiments were conducted using the mouse lung epithelial cell line MLE-12, mouse macrophage cell line RAW264.7, and mouse lung epithelial cell line (LEPC). ADSC-EVs were co-cultured with RAW264.7 and MLE-12/LEPC cells to study the regulatory mechanism of the lncRNA DLEU2. Cell viability, proliferation, and apoptosis of lung injury cells were assessed using CCK-8, EdU, and flow cytometry. ELISA was used to measure the levels of inflammatory cytokines in the sepsis mouse model, flow cytometry was performed to determine the number of M1 and M2 macrophages, lung tissue pathology was evaluated by H&E staining, and immunohistochemistry was conducted to examine the expression of proliferation- and apoptosis-related proteins. High-throughput sequencing and bioinformatics analysis revealed enrichment of the lncRNA DLEU2 in ADSC-EVs in sepsis lung tissue. Animal and in vitro cell experiments showed increased expression of the lncRNA DLEU2 in sepsis lung tissue after treatment with ADSC-EVs. Furthermore, ADSC-EVs were found to transfer the lncRNA DLEU2 to macrophages, promoting M2 polarization, reducing inflammation response in lung injury cells, and enhancing their viability, proliferation, and apoptosis inhibition. Further functional experiments indicated that lncRNA DLEU2 promotes M2 polarization of macrophages by regulating miR-106a-5p/LXN, thereby enhancing the viability and proliferation of lung injury cells and inhibiting apoptosis. Overexpression of miR-106a-5p could reverse the biological effects of ADSC-EVs-DLEU2 on MLE-12 and LEPC in vitro cell models. Lastly, in vivo animal experiments confirmed that ADSC-EVs-DLEU2 promotes high expression of LXN by inhibiting the expression of miR-106a-5p, further facilitating M2 macrophage polarization and reducing lung edema, thus alleviating sepsis-induced lung injury. lncRNA DLEU2 in ADSC-EVs may promote M2 polarization of macrophages and enhance the viability and proliferation of lung injury cells while inhibiting inflammation and apoptosis reactions, thus ameliorating sepsis-induced lung injury in a mechanism involving the regulation of the miR-106a-5p/LXN axis.


Assuntos
Lesão Pulmonar , MicroRNAs , Proteínas do Tecido Nervoso , RNA Longo não Codificante , Sepse , Animais , Camundongos , Apoptose/genética , Modelos Animais de Doenças , Lesão Pulmonar/microbiologia , Lesão Pulmonar/terapia , MicroRNAs/genética , RNA Longo não Codificante/administração & dosagem , RNA Longo não Codificante/genética , Sepse/complicações , Sepse/genética , Proteínas do Tecido Nervoso/genética , Células-Tronco Mesenquimais , Exossomos , Masculino , Camundongos Endogâmicos C57BL
9.
Pediatr Surg Int ; 40(1): 63, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431920

RESUMO

PURPOSE: Necrotizing enterocolitis (NEC) is a significant contributor to neonatal mortality. This study aimed to investigate the role of high levels of miR-375-3p in breast milk in the development of NEC and elucidate its mechanism. METHODS: Differential expression of miR-375-3p in the intestines of breast-fed and formula-fed mice was confirmed using real-time polymerase chain reaction (RT-PCR). NEC mice models were established, and intestinal injury was assessed using HE staining. RT-PCR and Western blot were conducted to examine the expression of miR-375-3p, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein ß (YWHAB), as well as the inflammatory in IEC-6 cells, and intestinal tissues obtained from NEC mice and patients. Flow cytometry and cell counting kit-8 (CCK-8) were employed to elucidate the impact of miR-375-3p and YWHAB on cell apoptosis and proliferation. RESULTS: Breastfeeding increases miR-375-3p expression in the intestines. The expression of miR-375-3p in NEC intestinal tissues exhibited a significant decrease compared to the healthy group. Additionally, the expression of interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) was higher in the NEC group compared to the control group. Down-regulation of miR-375-3p inhibited IEC-6 cell proliferation, increased apoptosis, and elevated secretion of inflammatory factors. Bioinformatics revealed that YWHAB may be a target of miR-375-3p. RT-PCR and Western blot indicated a down-regulation of YWHAB expression in intestines of NEC patients and mice. Furthermore, YWHAB was found to be positively connected with miR-375-3p. Knockdown miR-375-3p down-regulated YWHAB expression in cells. Inhibition of YWHAB exhibited similar effects to miR-375-3p in IEC-6 cells. YWHAB plasmid partially reverse cellular functional impairment induced by miR-375-3p knockdown. CONCLUSIONS: Breastfeeding elevated miR-375-3p expression in intestines in neonatal mice. MiR-375-3p leads to a decrease in apoptosis of intestinal epithelial cells, an increase in cell proliferation, and a concomitant reduction in the expression of inflammatory factors partly through targeting YWHAB.


Assuntos
Proteínas 14-3-3 , Enterocolite Necrosante , Doenças do Recém-Nascido , MicroRNAs , Animais , Feminino , Humanos , Recém-Nascido , Camundongos , Proteínas 14-3-3/metabolismo , Traumatismos Abdominais , Enterocolite Necrosante/metabolismo , Doenças Fetais , MicroRNAs/genética
10.
Angew Chem Int Ed Engl ; 63(13): e202315386, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299757

RESUMO

In dinitrogen (N2 ) fixation chemistry, bimetallic end-on bridging N2 complexes M(µ-η1 : η1 -N2 )M can split N2 into terminal nitrides and hence attract great attention. To date, only 4d and 5d transition complexes, but none of 3d counterparts, could realize such a transformation. Likewise, complexes {[Cp*Cr(dmpe)]2 (µ-N2 )}0/1+/2+ (1-3) are incapable to cleave N2 , in contrast to their Mo congeners. Remarkably, cross this series the N-N bond length of the N2 ligand and the N-N stretching frequency exhibit unprecedented nonmonotonic variations, and complexes 1 and 2 in both solid and solution states display rare thermally activated ligand-mediated two-center spin transitions, distinct from discrete dinuclear spin crossovers. In-depth analyses using wave function based ab initio calculations reveal that the Cr-N2 -Cr bonding in complexes 1-3 is distinguished by strong multireference character and cannot be described by solely one electron configuration or Lewis structure, and that all intriguing spectroscopic observations originate in their sophisticate multireference electronic structures. More critical is that such multireference bonding of complexes 1-3 is at least a key factor that contributes to their kinetic inertness toward N2 splitting. The mechanistic understanding is then used to rationalize the disparate reactivity of related 3d M(µ-η1 : η1 -N2 )M complexes compared to their 4d and 5d analogs.

11.
J Agric Food Chem ; 72(6): 2935-2942, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317284

RESUMO

Sclerotinia stem rot (SSR) caused by the phytopathogenic fungus Sclerotinia sclerotiorum has led to serious losses in the yields of oilseed rape and other crops every year. Here, we designed and synthesized a series of carboxamide derivatives containing a diphenyl ether skeleton by adopting the scaffold splicing strategy. From the results of the mycelium growth inhibition experiment, inhibition rates of compounds 4j and 4i showed more than 80% to control S. sclerotiorum at a dose of 50 µg/mL, which is close to that of the positive control (flubeneteram, 95%). Then, the results of a structure-activity relationship study showed that the benzyl scaffold was very important for antifungal activity and that introducing a halogen atom on the benzyl ring would improve antifungal activity. Furthermore, the results of an in vitro activity test suggested that these novel compounds can inhibit the activity of succinate dehydrogenase (SDH), and the binding mode of 4j with SDH was basically similar to that of the flutolanil derivative. Morphological observation of mycelium revealed that compound 4j could cause a damage on the mycelial morphology and cell structure of S. sclerotiorum, resulting in inhibition of the growth of mycelia. Furthermore, in vivo antifungal activity assessment of 4j displayed a good control of S. sclerotiorum (>97%) with a result similar to that of the positive control at a concentration of 200 mg/L. Thus, the diphenyl ether carboxamide skeleton is a new starting point for the discovery of new SDH inhibitors and is worthy of further development.


Assuntos
Ascomicetos , Brassica napus , Fungicidas Industriais , Antifúngicos/farmacologia , Ascomicetos/metabolismo , Relação Estrutura-Atividade , Brassica napus/metabolismo , Succinato Desidrogenase/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química
12.
Metab Brain Dis ; 39(4): 625-633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38416338

RESUMO

Selenium-containing agents showed novel anticancer activity by triggering pro-oxidative mechanism. Studies confirmed that methylseleninic acid (MeSe) displayed broad-spectrum anti-tumor activity against kinds of human cancers. However, the anticancer effects and mechanism of MeSe against human glioma growth have not been explored yet. Herein, the present study showed that MeSeA dose-dependently inhibited U251 and U87 human glioma cells growth in vitro. Flow cytometry analysis indicated that MeSe induced significant U251 cells apoptosis with a dose-dependent manner, followed by the activation of caspase-7, caspase-9 and caspase-3. Immunofluorescence staining revealed that MeSe time-dependently caused reactive oxide species (ROS) accumulation and subsequently resulted in oxidative damage, as convinced by the increased phosphorylation level of Ser428-ATR, Ser1981-ATM, Ser15-p53 and Ser139-histone. ROS inhibition by glutathione (GSH) effectively attenuated MeSe-induced ROS generation, oxidative damage, caspase-3 activation and cytotoxicity, indicating that ROS was an upstream factor involved in MeSe-mediated anticancer mechanism in glioma. Importantly, MeSe administration in nude mice significantly inhibited glioma growth in vivo by inducing apoptosis through triggering oxidative damage. Taken together, our findings validated the possibility that MeSe as a selenium-containing can act as potential tumor chemotherapy agent for therapy of human glioma.


Assuntos
Apoptose , Glioma , Camundongos Nus , Compostos Organosselênicos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Apoptose/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Animais , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C
13.
Medicine (Baltimore) ; 103(7): e37245, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363907

RESUMO

INTRODUCTION: Although electrocardiographic changes have been previously reported in patients with acute pancreatitis, diffuse ST-segment elevation without occluded coronary arteries is rarely documented. PATIENT CONCERNS: A 45-year-old man presented to our emergency department due to persistent epigastric pain for 2 hours. However, ECG in the emergency department revealed regular sinus rhythm at 67 beats per minute, peaked T waves in lead V3-5, and upsloping ST-segment elevation in leads II, III, aVF, and V2-6. DIAGNOSIS: He was diagnosed with acute pancreatitis and presented with diffuse ST-segment elevation. INTERVENTIONS: Laboratory workup and computed tomography supported the diagnosis of acute gallstone pancreatitis and endoscopic retrograde cholangiopancreatography was performed. Coronary angiography showed patent coronary arteries finally. OUTCOMES: Endoscopic retrograde cholangiopancreatography and endoscopic papillo-sphincterotomy were performed, and the stone in the common bile duct was removed smoothly without immediate complication. Due to his relatively stable condition, he was discharged on day 7 of admission. CONCLUSION: We presented an uncommon case of acute pancreatitis demonstrating similar features of AMI. This reminds cardiologists and emergency physicians to make the judgment with more caution to avoid jumping to conclusions and providing inappropriate treatment.


Assuntos
Colelitíase , Infarto do Miocárdio , Pancreatite , Masculino , Humanos , Pessoa de Meia-Idade , Pancreatite/diagnóstico , Pancreatite/etiologia , Infarto do Miocárdio/diagnóstico , Doença Aguda , Angiografia Coronária , Arritmias Cardíacas , Eletrocardiografia/métodos
14.
J Chem Inf Model ; 64(5): 1615-1627, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38356220

RESUMO

Cancer immunotherapy harnesses the immune system to combat tumors and has emerged as a major cancer treatment modality. The PD-1/PD-L1 immune checkpoint modulates interactions between tumor cells and T cells and has been extensively targeted in cancer immunotherapy. However, the monoclonal antibodies known to target this immune checkpoint have considerable side effects, and novel PD-1/PD-L1 inhibitors are therefore required. Herein, a peptide inhibitor to disrupt PD-1/PD-L1 interactions was designed through structure-driven phage display engineering coupled to computational modification and optimization. BetaPb, a novel peptide library constructed by using the known structure of PD-1/PD-L, was used to develop inhibitors against the immune checkpoint, and specific peptides with high affinity toward PD-1 were screened through enzyme-linked immunosorbent assays, homogeneous time-resolved fluorescence, and biolayer interferometry. A potential inhibitor, B8, was preliminarily screened through biopanning. The binding affinity of B8 toward PD-1 was confirmed through computation-aided optimization. Assessment of B8 variants (B8.1, B8.2, B8.3, B8.4, and B8.5) demonstrated their attenuation of PD-1/PD-L1 interactions. B8.4 exhibited the strongest attenuation efficiency at a half-maximal effective concentration of 0.1 µM and the strongest binding affinity to PD-1 (equilibrium dissociation constant = 0.1 µM). B8.4 outperformed the known PD-1/PD-L1 interaction inhibitor PL120131 in disrupting PD-1/PD-L1 interactions, revealing that B8.4 has remarkable potential for modification to yield an antitumor agent. This study provides valuable information for the future development of peptide-based drugs, therapeutics, and immunotherapies for cancer.


Assuntos
Bacteriófagos , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1/química , Antígeno B7-H1/química , Peptídeos/farmacologia , Peptídeos/química , Bacteriófagos/metabolismo
16.
Int J Legal Med ; 138(3): 961-970, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38240839

RESUMO

This study aimed to explore and develop data mining models for adult age estimation based on CT reconstruction images from the sternum. Maximum intensity projection (MIP) images of chest CT were retrospectively collected from a modern Chinese population, and data from 2700 patients (1349 males and 1351 females) aged 20 to 70 years were obtained. A staging technique within four indicators was applied. Several data mining models were established, and mean absolute error (MAE) was the primary comparison parameter. The intraobserver and interobserver agreement levels were good. Within internal validation, the optimal data mining model obtained the lowest MAE of 9.08 in males and 10.41 in females. For the external validation (N = 200), MAEs were 7.09 in males and 7.15 in females. In conclusion, the accuracy of our model for adult age estimation was among similar studies. MIP images of the sternum could be a potential age indicator. However, it should be combined with other indicators since the accuracy level is still unsatisfactory.


Assuntos
Esterno , Tomografia Computadorizada por Raios X , Adulto , Masculino , Feminino , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Esterno/diagnóstico por imagem , Mineração de Dados , China
17.
Bioresour Technol ; 395: 130408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295957

RESUMO

To overcome poor ammonia tolerance and removal performance of bio-contact oxidation (BCO) reactor inoculated with activated sludge for high-ammonia nitrogen (NH4+-N) chemical wastewater treatment, this study compared inoculating heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria in moving bed biofilm reactor (MBBR) with activated sludge inoculation in BCO reactor under simulated high NH4+-N conditions. Results revealed that MBBR achieved faster biofilm formation (20 days vs. 100 days for BCO) with notable advantages: 27.6 % higher total nitrogen (TN) and 29.9 % higher NH4+-N removal efficiency than BCO. Microbial analysis indicated optimal enrichment of the key nitrogen removal (NR) bacterium Alcaligenes, leading to increased expression of NR enzymes hydroxylamine reductase, ensuring the superior NR efficiency of the MBBR. Additionally, functional enzymes and genes analysis speculated that the NR pathway in MBBR was: NH4+-N â†’ NH2OH â†’ NO3--N â†’ NO2--N â†’ NO â†’ N2O â†’ N2. This research offers a practical and theoretical foundation for extending HN-AD bacteria-inoculated MBBR processes.


Assuntos
Nitrificação , Esgotos , Desnitrificação , Amônia/metabolismo , Biofilmes , Reatores Biológicos/microbiologia , Bactérias Aeróbias/metabolismo , Bactérias/genética , Bactérias/metabolismo , Processos Heterotróficos , Nitrogênio/análise
18.
Plant J ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251949

RESUMO

Phosphate (Pi) is essential for plant growth and development. One strategy to improve Pi use efficiency is to enhance Pi remobilization among leaves. Using transcriptome analysis with first (top) and fourth (down) leaf blades from rice (Oryza sativa) in Pi-sufficient and deficient conditions, we identified 1384 genes differentially expressed among these leaf blades. These genes were involved in physiological processes, metabolism, transport, and photosynthesis. Moreover, we identified the Pi efflux transporter gene, OsPHO1;3, responding to Pi-supplied conditions among these leaf blades. OsPHO1;3 is highly expressed in companion cells of phloem, but not xylem, in leaf blades and induced by Pi starvation. Mutation of OsPHO1;3 led to Pi accumulation in second to fourth leaves under Pi-sufficient conditions, but enhanced Pi levels in first leaves under Pi-deficient conditions. These Pi accumulations in leaves of Ospho1;3 mutants resulted from induction of OsPHT1;2 and OsPHT1;8 in root and reduction of Pi remobilization in leaf blades, revealed by the decreased Pi in phloem of leaves. Importantly, lack of OsPHO1;3 caused growth defects under a range of Pi-supplied conditions. These results demonstrate that Pi remobilization is essential for Pi homeostasis and plant growth irrespective of Pi-supplied conditions, and OsPHO1;3 plays an essential role in Pi remobilization for normal plant growth.

19.
Plant Dis ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175658

RESUMO

Phytoplasmas are a group of plant prokaryotic pathogens distributed worldwide. To comprehensively reveal the diversity of the pathogens and the diseases they cause on Hainan, a tropical island with abundant biodiversity in China, a survey of phytoplasmal diseases was performed from 2009 to 2022. Herein, molecular identification and genetic analysis were conducted based on the conserved genes of phytoplasmas. The results indicated that phytoplasmas could be detected in 138 samples from 18 host plants among 215 samples suspected to be infected by the pathogens. The phytoplasma strains from 27 diseased samples of 4 host plants belonged to the 16SrI group and the strains from 111 samples of 14 hosts belonged to the 16SrII group. Among them, 12 plants, including important tropical cash crops such as Phoenix dactylifera, cassava, sugarcane, and Piper nigrum, were first identified as hosts of phytoplasmas on Hainan Island. Based on BLAST and iPhyClassifier analyses, seven novel 16Sr subgroups were proposed to describe the relevant phytoplasma strains, comprising the 16SrI-AP, 16SrI-AQ, and 16SrI-AR subgroups within the 16SrI group and the 16SrII-Y, 16SrII-Z, 16SrII-AB, and 16SrII-AC subgroups within the 16SrII group. Genetic variation and phylogenetic analysis indicated that the phytoplasma strains identified in this study and those reported previously on Hainan Island mainly belong to 4 16Sr groups (including I, II, V, and XXXII) and could infect 44 host plants, among which the 16SrI and 16SrII groups were the prevalent 16Sr groups associated with 43 host plant species. The diversity of host plants infected by the phytoplasmas made it difficult to monitor and control their related diseases. Therefore, strengthening inspection and quarantine during the introduction and transit of the related phytoplasmal host crops would effectively curb the spread and prevalence of the phytoplasmas and their related lethal diseases.

20.
Heliyon ; 10(1): e23805, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192750

RESUMO

Rhamnosyl Icariside II is a rare secondary flavonoid glycoside isolated from Epimedium L. plants. It has better stability and physiological activity than the primary flavonoid glycosides of Epimedium L., therefore, conversion of the primary flavonoid glycoside into Rhamnosyl Icariside II would be desirable. In this study, a method for the enzymatic production of Rhamnosyl Icariside II from the total flavonoids of Epimedium wushanense was established, and the conditions were optimized. Six commercial enzymes were screened, and the reaction conditions for the best enzyme were optimized. Snailase was the most effective hydrolase, and the highest yield was obtained under the optimized conditions. To facilitate industrial production of Rhamnosyl Icariside II, a scaled-up pilot test was performed. The reaction solution was extracted with n-butanol to obtain the Rhamnosyl Icariside II crude product, which was then subjected to silica gel column chromatography and preparative chromatography. Finally, a product of Rhamnosyl Icariside II with purity of 99.1 % was achieved, in a total yield of 46.8 %. Compared to direct extraction and acid hydrolysis, this method improves the product yield and purity, which is of great significance for the large-scale production of Rhamnosyl Icariside II. This study provides a basis for the physiological activity study of Rhamnosyl Icariside II, and offers possibilities for future applications in the healthcare sector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...